A method for atlas-based volumetric registration with surface constraints for Optical Bioluminescence Tomography in small animal imaging
نویسندگان
چکیده
Atlases are normalized representations of anatomy that can provide a standard coordinate system for in vivo imaging studies. For Optical Bioluminescence Tomography (OBT) in small animals, the animal’s surface topography can be reconstructed from structured light measurements, but internal anatomy is unavailable unless additional CT or MR images are acquired. We present a novel method for estimating the internal organ structure of a mouse by warping a labeled 3D volumetric mouse atlas with the constraint that the surfaces of the two should match. Surface-constrained harmonic maps used for this bijective warping are computed by minimizing the covariant harmonic energy. We demonstrate the application of this warping scheme in OBT, where scattering and absorption coefficients of tissue are functions of the internal anatomy and hence, better estimates of the organ structures can lead to a more accurate forward model resulting in improved source localization. We first estimated the subject’s internal geometry using the atlas-based warping scheme. Then the mouse was tessellated and optical properties were assigned based on the estimated organ structure. Bioluminescent sources were simulated, an optical forward model was computed using a finite-element solver, and multispectral data were simulated. We evaluate the accuracy of the forward model computed using the warped atlas against that assuming a homogeneous mouse model. This is done by comparing each model against a ‘true’ optical forward model where the anatomy of the mouse is assumed known. We also evaluate the impact of anatomical alignment on bioluminescence source localization.
منابع مشابه
Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispec...
متن کاملComparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction
Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...
متن کاملGenerating Synthetic Computed Tomography and Synthetic Magnetic Resonance (sMR: sT1w/sT2w) Images of the Brain Using Atlas-Based Method
Introduction: Nowadays, magnetic resonance imaging (MRI) in combination with computed-tomography (CT) is increasingly being used in radiation therapy planning. MR and CT images are applied to determine the target volume and calculate dose distribution, respectively. Since the use of these two imaging modalities causes registration uncertainty and increases department w...
متن کاملGeometrical Modeling Using Multiregional Marching Tetrahedra for Bioluminescence Tomography
Localization and quantification of the light sources generated by the expression of bioluminescent reporter genes is an important task in bioluminescent imaging of small animals, especially the generically engineered mice. To employ the Monte Carlo method for the light-source identification, the surfaces that define the anatomic structures of the small experimental animal is required; to perfor...
متن کاملAtlas-based attenuation correction for small animal PET/MRI scanners
Small animal PET/MRI scanners producing anatomically co-registered simultaneously-acquired images of morphology, function and metabolic activity have become available and are expected to have a huge positive impact on the pre-clinical imaging field. Attenuation correction (AC) necessary for accurate quantification of PET signals is challenging in these scanners because the measured anatomical m...
متن کامل